取消
搜索历史
热搜词
原创
活动
产业创新
转型理念
ENI专访
当前位置:首页 >文章发布 > 正文
一文读懂BI商业智能与大数据应用的区别
来源:互联网  : 佚名 2017-04-25 15:12:10
伴随着BI的发展,是ETL,数据集成平台等概念的提出。ETL,Extraction Transformation Loading,数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关转化,以此来满足BI、数据仓库对数据格式和内容挖掘的要求。

BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。

伴随着BI的发展,是ETL,数据集成平台等概念的提出。ETL,Extraction Transformation Loading,数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关转化,以此来满足BI、数据仓库对数据格式和内容挖掘的要求。

数据集成平台的基础工作与ETL有很大的相似性,其主要功能是实现不同系统不同格式数据地抽取,并且按照目标需求转化成为相应的格式。数据集成开始是点对点的,慢慢地发现这种模式对于系统之间,不同所有权的企业数据流向以及数据标准控制很难,为此,诞生了对统一企业数据平台的需求,来实现企业级之间的数据交互。

数据集成平台就像网络中Hub,可以连接所有应用系统,实现系统之间数据的互通有无。数据集成平台以BI、数据仓库需求而产生,现在已经跨越了最初的需求,上升到了一个更高的阶段。

如今大数据应用更多关注非结构化数据,更多谈论互联网,Twitter、Facebook、博客等非结构化数据,如此理解大数据应用,显然就有些走偏了。结构化数据也属于大数据,且呈现出相同的特点和特征,如数据量大,增长越来越快,对数据处理要求高等。

大数据应用的数据来源应该包括结构化数据,如各种数据库、各种结构化文件、消息队列和应用系统数据等,其次才是非结构化数据,又可以进一步细分为两部分,一是社交媒体,如Twitter、Facebook、博客等产生的数据,包括用户点击的习惯/特点,发表的评论,评论的特点,网民之间的关系等,这些都构成了大数据来源。另外一部分数据,也是数据量比较大的数据,就是机器设备以及传感器所产生的数据。以电信行业为例,CDR、呼叫记录,这些数据都属于原始传感器数据,主要来自路由器或者基站。此外,手机的置传感器,各种手持设备、门禁系统,摄像头、ATM机等,其数据量也非常巨大。

对于分析大数据的工具,目前所有的分析工具都侧重于结构化分析,例如针对社交媒体评论方向的分析,根据特定的词频或者语义,通过统计正面/负面评论的比例,来确定评论性质。如果有一个应用系统是接收结构化数据的,例如一个分析系统,接收这些语义就可以便于分析。

大数据应用落地,其中的关键在于与行业应用的深度融合。

在电信行业,计费系统实际上是对各种数据进行整合后的结果,是一个缩小的数据。借助大数据应用,运营商可以原始大数据进行分析,例如分析传感器数据是否有异常,从而判断设备异常等,这些都是一些用传统BI工具无法实现的分析,其结果往往会出乎意料,帮助运营商提高服务水平以及用户的满意度。

在互联网行业,通过分析手机上网轨迹,可以分析了解客户群,了解用户的偏好,此外,获取地理位置的信息,也具有特定价值。

从这些行业大数据应用分析来看,一个是视频影像处理,一个是日志分析,另外一个是处理特定文件格式的分析处理,彼此之间显然没有任何通用性的特点,其共同点就是利用了廉价的大数据处理平台。

编辑:赵贤慧
关键词:     BI  大数据  互联网  数据集成 
活动 直播间  | CIO智行社

分享到微信 ×

打开微信,点击底部的“发现”,
使用“扫一扫”即可将网页分享至朋友圈。